
Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

INF226 – Software Security

Håkon Robbestad Gylterud

2019–09-18

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Authentication

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Authentication
Authentication is the act of verifying the identity of actors in the
system.

1 A is communicating with B. (Un authenticated)
2 A knows that they are communicating with B. (Authenticated)

Examples

Certificates issued by a Certificate Authority (CA)
authenticates websites visted over HTTPS by the browser.
Passwords authenticate the user when logging in to a
computer.
A shibboleth authenticates a member of a group, in social
settings.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Authentication
Authentication is the act of verifying the identity of actors in the
system.

1 A is communicating with B. (Un authenticated)
2 A knows that they are communicating with B. (Authenticated)

Examples

Certificates issued by a Certificate Authority (CA)
authenticates websites visted over HTTPS by the browser.
Passwords authenticate the user when logging in to a
computer.
A shibboleth authenticates a member of a group, in social
settings.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Authentication
Authentication is the act of verifying the identity of actors in the
system.

1 A is communicating with B. (Un authenticated)
2 A knows that they are communicating with B. (Authenticated)

Examples

Certificates issued by a Certificate Authority (CA)
authenticates websites visted over HTTPS by the browser.
Passwords authenticate the user when logging in to a
computer.
A shibboleth authenticates a member of a group, in social
settings.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Passwords

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Passwords

What are the pros and cons of passwords as an authentication
mechanism?

What were Dr. Cranor’s conclusions?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Passwords

What are the pros and cons of passwords as an authentication
mechanism?

What were Dr. Cranor’s conclusions?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Password alphabet size vs. password length

A quick “back of the napkin” calculation shows that there is not
much to gain by increasing the size alphabet:

Incresing the alphabet is equivalent to increasing the length by
a constant factor which grows logarithmically in the size in the
size of the alphabet.

BUT: There is also no reason to make artificial restrictions on what
character’s the users are allowed to use.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

NIST guidelines for passwords

The complicated requirements mentioned by Dr. Cranor have been
deprecated in the latest guidelines, in favour of a more simpler:

Require a minimum password length.
The minimum length requirement must be 8 characters or
greater.
Allow at least 64 characters.
Check against a list of known bad passwords. For instance:

Dictionary words.
Repetitive or sequential characters (e.g. ‘aaaaaa’, ‘1234abcd’).
Context-specific words, such as the name of the service, the
username, and derivatives thereof.
Passwords obtained from previous breach corpuses.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Storing passwords

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Have I been pwned?

https://haveibeenpwned.com/

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Cryptographic hash functions

foobar → aec070645fe...
foobat → c7f0f45765b...

Requirements of a cryptographic hash function

One-way: Given y , difficult to find x such that h(x) = y .
Collision free: Difficult to find x and x ′ such that
h(x) = h(x ′).
A small change in input yield a large difference in output.
Quick to compute.

Examples:

MD5, and SHA1 has known collisions
SHA256/512 and SHA3 has no known collisions

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Cryptographic hash functions

foobar → aec070645fe...
foobat → c7f0f45765b...

Requirements of a cryptographic hash function

One-way: Given y , difficult to find x such that h(x) = y .
Collision free: Difficult to find x and x ′ such that
h(x) = h(x ′).
A small change in input yield a large difference in output.
Quick to compute.

Examples:

MD5, and SHA1 has known collisions
SHA256/512 and SHA3 has no known collisions

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Uses of hash functions

Checksumming transferred data
Data identifier
Hashing passwords
Signature generation/verification
Building other cryptographic primitives

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Hashing passwords

Easy (but not recommended) way to verify passwords without
storing the password itself:

Given password x , store h(x).
When the user logs in with password y , check that h(y) = h(x)
and conclude x = y .

If the application database is leaked, only hashes of passwords are
disclosed.

Issues with this strategy?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Issues with hashing password

If same password is reused, hashes will be the same.
Hashes can be computed efficiently for a dictionary of
passwords.
An attacker can use the hash to brute force the password

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Rainbow tables

Rainbow tables refers to a time–space-tradeoff when creating a
lookup table for hash values → plaintext.

Expositions:

https://en.wikipedia.org/wiki/Rainbow_table
http://kestas.kuliukas.com/RainbowTables/

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Salting

Efficient solution to make rainbow tables / hash dictionaries
infeasible.

In stead of storing h(x), generate a random byte-string s and store
s, h(h(x)⊕ s).

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

How much salt?

Contemporary unix-like systems use 128-bits salts.

Salting does not help against a brute-force attack on a single
password.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Key derivation functions

Fact of life: Users chose passwords with low entropy.

Idea: What if we made computing the hash really expensive?

If each attempt as guessing is expensive, it will be more difficult to
guess the password.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Key derivation functions

Requirements for key derivation functions:

One-way
Collision free
A small change in input yield a large difference in output.
CPU intensive
Memory expensive
Sequential (difficult to parallelize)

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

A naïve key derivation scheme

In stead of storing h(x), generate two random byte-strings s1 and s2
and store s1, h(h(h(x)⊕ s2)⊕ s1).

Now both an attacker and a legitimate login function must guess s2.

The length of s2 works as a cost parameter. s1 is just regular salt.

Problem with this approach?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

SCrypt

Introduced by Colin Percival in 2009, for his Tarsnap back-up
service.

Sources:

RFC 7914
https://www.tarsnap.com/scrypt.html

(Compare to Argon2)

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

SCrypt

The previous key derivation scheme is trivially computed in parallel,
at no additional memory cost.

SCrypt is a key derivation function which is maximally memory
hard.

However, its use in crypto-currencies means that there has been
developed quite fast specialized circuits for scrypt.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

SCrypt

Parameters:

r block size parameter
N CPU/Memory cost parameter (a power of two)
p parallelism parameter (affects CPU cost, not memory)

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Other password guessing prevention measures

Rate-limiting password attempts
Proof-of-work form the client

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Two-factor authentication

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Two-factor authentication

The idea: Introduce an additional authentication mechanisms in
addition to passwords.

Examples:

SMS codes (considered insecure: Example Reddit developers
hacked via SMS intercept)
Print-out with one-time codes.
A device with time-based, one-time passwords (TOTP)
Approval from an already authenticated device (Example:
Keybase)
Public key cryptography (U2F / FIDO , WebAuthn).

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Two-factor authentication

The idea: Introduce an additional authentication mechanisms in
addition to passwords.

Examples:

SMS codes (considered insecure: Example Reddit developers
hacked via SMS intercept)
Print-out with one-time codes.
A device with time-based, one-time passwords (TOTP)
Approval from an already authenticated device (Example:
Keybase)
Public key cryptography (U2F / FIDO , WebAuthn).

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Two-factor authentication

Current status:

More and more services use multiple factors.
Many two-factor systems vulnereable to phishing → malicious
proxy attacks (Modlishka is one such proxy).
Public-key systems integrated with the browser can (in theory)
prevent proxy attack.
WebAuthn is a new (March 2019) W3C standard.

Håkon Robbestad Gylterud
INF226 – Software Security

https://github.com/drk1wi/Modlishka


Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Password recovery

What about when the user forgets their password? Or looses their
second factor?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Public key cryptography and authentication

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Public key cryptography

Figure 1: Public key cryptography

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Man-in-the-middle attacks

Figure 2: Public key cryptography

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Centralized Certificate Authorities

Assumption: We trust a central authority to verfiy public keys for us.

Mechanims: Central authority verifies identity and issues certificates
on public keys.

Examples:

Browsers ship with a list of public keys of trusted Certificate
Authorities.
Organsations can distribute their own certificates for internal
use.

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Other schemes

For peer-to-peer authentication:

one can use preexisting shared secrets (Example: Socialist
Millionaire protocol)
out-of-band communication (verfication of key fingerprints)

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Logged in, and then what?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Logged in, and then what?

User actions are often given in separate requests from the
authentication request.
How do we ensure that each request comes from a valid user?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Example: Webmail

1 /login

User requests login form, and enters password

2 /inbox

User posts login details to the inbox page
Server responds with inbox, listing messages, after checking
password

3 /delete?messageid=123

User requests a message deleted
How can the server know the user is the same?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Session IDs

The standard way solution is to use a session ID, which identifies
the user in the following session.

Requires:

Entropy: Session ID must not be guessable (random, 128 bits)
Secrecy: Session ID must not be leaked:

HTTPS
Debugging modes often leak session IDs
Cross-site-scripting (Cookies: HttpOnly, SameSite).

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Common pitfall: Lacking entropy

Special care needs to be taken when generating random salts or
secret keys.

Entropy is a finite resource on any system.
Not all random number generators are suitable for
cryptographic use.

Use the recommended source of randomness on your system!

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

java.util.Random

java.util.Random is a Linear Congruential Generator (LCG).

Using java.util.Random is a very insecure source of
cryptographic randomness:

By observing only a few bytes of output from an LCG, one can
completely determine the rest of the sequence.

(LCGs are well suited for statistical work and Monte-Carlo
simulations)

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Generating secure random bytes in Java

You can use SecureRandom as a general purpose source of entropy:

Code

import java.security.SecureRandom;
· · ·
SecureRandom random = new SecureRandom();

final byte[] token = new byte[32];
random.nextBytes(token);

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Generating secure random keys in Java

Different ciphers have different KeyGenerator implementations in
Java. For instance AES:

javax.crypto.KeyGenerator;
javax.crypto.SecretKey;
· · ·
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(256); // Specifying the key-size
SecretKey secretKey = keyGen.generateKey();

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Structure of a user authentication scheme based on
passwords

1 Provide a way for user to authenticate server (ex: HTTPS
w/valid certificate)

2 Establish a secure communication channel (ex: HTTPS)
3 User transmits password
4 Server verifies password:

Salted (128 bit)
Run through an expensive key derivation function (ex: SCrypt)

5 Server responds with a secure session ID
6 Client program stores session ID as securely as possible

Comments:

Are there alternatives to sending the password to the server?
Two-factor would be better.Håkon Robbestad Gylterud

INF226 – Software Security


	Authentication
	Passwords
	Storing passwords
	Two-factor authentication
	Public key cryptography and authentication
	Logged in, and then what?

