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Authentication
Authentication is the act of verifying the identity of actors in the
system.

1 A is communicating with B. (Un authenticated)
2 A knows that they are communicating with B. (Authenticated)

Examples

Certificates issued by a Certificate Authority (CA)
authenticates websites visted over HTTPS by the browser.
Passwords authenticate the user when logging in to a
computer.
A shibboleth authenticates a member of a group, in social
settings.
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Passwords

What are the pros and cons of passwords as an authentication
mechanism?

What were Dr. Cranor’s conclusions?
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Password alphabet size vs. password length

A quick “back of the napkin” calculation shows that there is not
much to gain by increasing the size alphabet:

Incresing the alphabet is equivalent to increasing the length by
a constant factor which grows logarithmically in the size in the
size of the alphabet.

BUT: There is also no reason to make artificial restrictions on what
character’s the users are allowed to use.
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NIST guidelines for passwords

The complicated requirements mentioned by Dr. Cranor have been
deprecated in the latest guidelines, in favour of a more simpler:

Require a minimum password length.
The minimum length requirement must be 8 characters or
greater.
Allow at least 64 characters.
Check against a list of known bad passwords. For instance:

Dictionary words.
Repetitive or sequential characters (e.g. ‘aaaaaa’, ‘1234abcd’).
Context-specific words, such as the name of the service, the
username, and derivatives thereof.
Passwords obtained from previous breach corpuses.
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Storing passwords
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Have I been pwned?

https://haveibeenpwned.com/
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Cryptographic hash functions

foobar → aec070645fe...
foobat → c7f0f45765b...

Requirements of a cryptographic hash function

One-way: Given y , difficult to find x such that h(x) = y .
Collision free: Difficult to find x and x ′ such that
h(x) = h(x ′).
A small change in input yield a large difference in output.
Quick to compute.

Examples:

MD5, and SHA1 has known collisions
SHA256/512 and SHA3 has no known collisions
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Uses of hash functions

Checksumming transferred data
Data identifier
Hashing passwords
Signature generation/verification
Building other cryptographic primitives
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Hashing passwords

Easy (but not recommended) way to verify passwords without
storing the password itself:

Given password x , store h(x).
When the user logs in with password y , check that h(y) = h(x)
and conclude x = y .

If the application database is leaked, only hashes of passwords are
disclosed.

Issues with this strategy?
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Issues with hashing password

If same password is reused, hashes will be the same.
Hashes can be computed efficiently for a dictionary of
passwords.
An attacker can use the hash to brute force the password
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Rainbow tables

Rainbow tables refers to a time–space-tradeoff when creating a
lookup table for hash values → plaintext.

Expositions:

https://en.wikipedia.org/wiki/Rainbow_table
http://kestas.kuliukas.com/RainbowTables/
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Salting

Efficient solution to make rainbow tables / hash dictionaries
infeasible.

In stead of storing h(x), generate a random byte-string s and store
s, h(h(x)⊕ s).
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How much salt?

Contemporary unix-like systems use 128-bits salts.

Salting does not help against a brute-force attack on a single
password.
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Key derivation functions

Fact of life: Users chose passwords with low entropy.

Idea: What if we made computing the hash really expensive?

If each attempt as guessing is expensive, it will be more difficult to
guess the password.
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Key derivation functions

Requirements for key derivation functions:

One-way
Collision free
A small change in input yield a large difference in output.
CPU intensive
Memory expensive
Sequential (difficult to parallelize)
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A naïve key derivation scheme

In stead of storing h(x), generate two random byte-strings s1 and s2
and store s1, h(h(h(x)⊕ s2)⊕ s1).

Now both an attacker and a legitimate login function must guess s2.

The length of s2 works as a cost parameter. s1 is just regular salt.

Problem with this approach?
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SCrypt

Introduced by Colin Percival in 2009, for his Tarsnap back-up
service.

Sources:

RFC 7914
https://www.tarsnap.com/scrypt.html

(Compare to Argon2)
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SCrypt

The previous key derivation scheme is trivially computed in parallel,
at no additional memory cost.

SCrypt is a key derivation function which is maximally memory
hard.

However, its use in crypto-currencies means that there has been
developed quite fast specialized circuits for scrypt.
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SCrypt

Parameters:

r block size parameter
N CPU/Memory cost parameter (a power of two)
p parallelism parameter (affects CPU cost, not memory)
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Other password guessing prevention measures

Rate-limiting password attempts
Proof-of-work form the client
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Two-factor authentication

The idea: Introduce an additional authentication mechanisms in
addition to passwords.

Examples:

SMS codes (considered insecure: Example Reddit developers
hacked via SMS intercept)
Print-out with one-time codes.
A device with time-based, one-time passwords (TOTP)
Approval from an already authenticated device (Example:
Keybase)
Public key cryptography (U2F / FIDO , WebAuthn).
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Two-factor authentication

Current status:

More and more services use multiple factors.
Many two-factor systems vulnereable to phishing → malicious
proxy attacks (Modlishka is one such proxy).
Public-key systems integrated with the browser can (in theory)
prevent proxy attack.
WebAuthn is a new (March 2019) W3C standard.
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Password recovery

What about when the user forgets their password? Or looses their
second factor?
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Public key cryptography and authentication
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Public key cryptography

Figure 1: Public key cryptography
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Man-in-the-middle attacks

Figure 2: Public key cryptography
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Trust upon first use

Assumption: The man in the middle does not strike the first time.

Mechanism: Trust the public key used in first session. Use that for
authentication of later sessions.

Works well for long-lasting trust-relationships. Or when no existing
trust relationship exists (i.e. web-site registration).
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Centralized Certificate Authorities

Assumption: We trust a central authority to verfiy public keys for us.

Mechanims: Central authority verifies identity and issues certificates
on public keys.

Examples:

Browsers ship with a list of public keys of trusted Certificate
Authorities.
Organsations can distribute their own certificates for internal
use.
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Other schemes

For peer-to-peer authentication:

one can use preexisting shared secrets (Example: Socialist
Millionaire protocol)
out-of-band communication (verfication of key fingerprints)
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Logged in, and then what?
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Logged in, and then what?

User actions are often given in separate requests from the
authentication request.
How do we ensure that each request comes from a valid user?
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Example: Webmail

1 /login

User requests login form, and enters password

2 /inbox

User posts login details to the inbox page
Server responds with inbox, listing messages, after checking
password

3 /delete?messageid=123

User requests a message deleted
How can the server know the user is the same?

Håkon Robbestad Gylterud
INF226 – Software Security



Authentication Passwords Storing passwords Two-factor authentication Public key cryptography and authentication Logged in, and then what?

Session IDs

The standard way solution is to use a session ID, which identifies
the user in the following session.

Requires:

Entropy: Session ID must not be guessable (random, 128 bits)
Secrecy: Session ID must not be leaked:

HTTPS
Debugging modes often leak session IDs
Cross-site-scripting (Cookies: HttpOnly, SameSite).
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Common pitfall: Lacking entropy

Special care needs to be taken when generating random salts or
secret keys.

Entropy is a finite resource on any system.
Not all random number generators are suitable for
cryptographic use.

Use the recommended source of randomness on your system!
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java.util.Random

java.util.Random is a Linear Congruential Generator (LCG).

Using java.util.Random is a very insecure source of
cryptographic randomness:

By observing only a few bytes of output from an LCG, one can
completely determine the rest of the sequence.

(LCGs are well suited for statistical work and Monte-Carlo
simulations)
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Generating secure random bytes in Java

You can use SecureRandom as a general purpose source of entropy:

Code

import java.security.SecureRandom;
· · ·
SecureRandom random = new SecureRandom();

final byte[] token = new byte[32];
random.nextBytes(token);
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Generating secure random keys in Java

Different ciphers have different KeyGenerator implementations in
Java. For instance AES:

javax.crypto.KeyGenerator;
javax.crypto.SecretKey;
· · ·
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(256); // Specifying the key-size
SecretKey secretKey = keyGen.generateKey();
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Structure of a user authentication scheme based on
passwords

1 Provide a way for user to authenticate server (ex: HTTPS
w/valid certificate)

2 Establish a secure communication channel (ex: HTTPS)
3 User transmits password
4 Server verifies password:

Salted (128 bit)
Run through an expensive key derivation function (ex: SCrypt)

5 Server responds with a secure session ID
6 Client program stores session ID as securely as possible

Comments:

Are there alternatives to sending the password to the server?
Two-factor would be better.Håkon Robbestad Gylterud
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