
System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

INF226 – Software Security

Håkon Robbestad Gylterud

2019–09-16

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

System calls and file descriptors

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

The application and the OS

The operating system provides a rich interface for programs.

Figure 1: System calls

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

File descriptors

Figure 2: System calls

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

System call / file descriptor demo

Let us look at the system calls made by some simple programs.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Principle of least priviledge

From the PrivSep article:
Every program and every user should operate using the
least amount of privilege necessary to complete the job.

(Similiar formulations to be found in the course books.)

How do we reconcile this with the plethora of system calls available?

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Principle of least priviledge

From the PrivSep article:
Every program and every user should operate using the
least amount of privilege necessary to complete the job.

(Similiar formulations to be found in the course books.)

How do we reconcile this with the plethora of system calls available?

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Last time

We saw various ways of restricting process priviledges:

Running as unpriviledged user (UID and GID on Linux).
Quotas and limits on network, filesystem and RAM.
chroot
Namespaces
pledge or seccomp

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Today: Priviledge separation in SSH

OpenSSH:

is an implementation of the SSH (Secure SHell) protocols,
part of the OpenBSD project
found on most modern unix-like systems
provides secure remote access to machine (PKI)
extensive feature set:

remote terminal access
X11 forwarding (for GUI)
port forwarding (network routing)
. . .

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Preventing priviledge escalation

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Motivation

Typical service behaviour:

Accept requests from network (untrusted)
Authenticate user
Allow priviledged operations to authenticated users

Problem: Difficult to safely escalate priviledges once the user is
authenticated.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Example

void login(int connection) {
// Get user authentication data from network
char buffer[1024];
read_auth_info(buffer);

if(verify_auth(buffer))
// User is authenticated!
escalate_priviledges();

else
exit();

}

Question: What potential security problems could arise from this
code?

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Priviledge separation in SSH
Provos, Friedl, Honeyman: Preventing Priviledge Escalation (2003)

Provides a general general pattern of monitor/slave processes:

Monitor:
Priviledged
Provides an interface for slave to perform priviledged operations.
Validates the requests to perform operations.
Finite state machine

Slave:
Unpriviledged
Does most of the work
Calls on monitor when priviledged operations must be performed

Applies it to OpenSSH.
Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Priviledge separation overview

Figure 3: Priviledge separation
Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Motivation

Basic principle: Limit the amount of code running in a priviledged
process.

Benefits:

Without further holes in the monitor, RCE vulnerabilities are
confined to the slave.
Bugs in unpriviledged part will ideally only result in denial of
service for the misbehaving client.
More intense scrutiny can be given to priviledged parts.
Simplifying the priviledged part makes reasoning about its
security easier.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Implementing the monitor/slave pattern

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Indentifying priviledged operations

File access
Accessing cryptographic keys
Data base access
Spawning pseudo-terminals
Binding to a network interface

From these operations a service specific monitor/slave interface is
defined.

This is an example of functional decomposition.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Monitor

Monitor does not give sensitive resources to slave, but performs
actions on its behalf.

Example: Instead of giving access to keys, monitor will make a
signature upon request.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Different types of requests

Information requests
Capabilities (passing file descriptors)
Change of identity

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Phases

Pre-authentication phase
Slave has as little priviledge as possible
Monitor only accepts authentication related requests from slave

Post-authentication phase
Slave has normal user priviledges
Monitor validates requests requiring additional priviledges

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Implementating priviledge separation

Once a network connection is made, service spawns a separate
monitor/slave pair for that connection.

Slave process is created by:

Changing UID and GID to unused values
Chrooted into an empty, unwritable directory
Marked as P_SUGID (prevent information leakage between
slaves)
pledge("stdio",NULL)

Slave is given the file descriptor for the network connection.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Slave/master communication

Slave communicates with master through an IPC mechanism such as

pipe
shared memory
socket-pair

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Change of identity

Once the user is authenticated, the slave should run as a normal
user.

Problem: Unix does not support changing UID of a process
without UID=0.

Solution:

1 Terminate slave and
2 Monitor spawns a new process with correct UID/GID

To be able to meaningfully continue the session, slave state must
be retained.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Retaining slave state

The suggested way to retain slave state is by:

Serializing data structures and transfer to master.
Allocate dynamic memory resources on memory shared with
master.

When new slave is spawned:

Serialized data structures are passed through IPC
Memory shared with new slave

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Priviledged operations in sshd

SSHD priviledged operations in pre-authentication phase:

Access to allowed Diffie-Hellman parameters
Signing a challenge with server private key to authenticate the
connection.
User validation
Password authentication
Public key authentication

The number of requests allowed by slave is limited.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Change of identity

As mentioned:

data structures are serialized
shared memory transferred

But a slight complication is the zlib compression of the data
stream:

special hooks in zlib for custom memory allocation

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Priviledged operations in sshd

SSHD priviledged operations in post-authentication phase:

Key exchange:
SSHv2 supports renewing cryptographic keys

Pseudo terminal creation (PTY)
Requires root to change ownership of a device file
Passes the file descriptor to the client

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Results

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Results

Required updates in code base:

950 lines changed (2% of 44 000 total in sshd)
Additional code added.
Separate library, privman for the general parts.
Used by other services

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Results

Division of code into priviledged and un-priviledged parts:

67.70% unpriviledged
32.30% priviledged

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Security analysis

Assumption: RCE gives attacker control over the slave.

Possible further escalation paths:

Taking over other system processes
Restricted by UID
Other slave processes protected by P_SGUID

System calls to change the file system:
File system root empty and unwritable

(cont.)

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Possible further esclalation paths (cont.):

Local network connections:
Not preventable by this mechanism
May abuse IP based trust relationships

Gaining information about the system:
System time
PID of processes
Depends on the system if these are accessible through file
system or system calls

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Other ways to harm the system

The attacker can also attempt using up system resources

Fork bomb
Intensive computations

Mitigated by system limits.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Quotas and limits

Resource limits:

Process number limit
preventing DoS by fork bombs, :(){ :|:& };:

File descriptor limit
Memory limits (data,stack)
Disk quotas
Niceness (CPU priority)

Default values in /etc/login.conf

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Exercises

Read the article Preventing Priviledge Escalation, and answer the
questions:

1 Which operating system mechanisms does this approach to
priviledge separation rely upon?

2 Why does the slave process have to restart when going from
pre-authentication phase to post-authentication phase?

3 What does the P_SUGID flag do?

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Muddiest point

Fill in the form linked from mitt.uib.no.

Håkon Robbestad Gylterud
INF226 – Software Security

System calls and file descriptors Preventing priviledge escalation Implementing the monitor/slave pattern Results

Next lecture: Authentication

Passwords, entropy and policies
Storing passwords:

Hashing
Salting (to protect agains rainbow tables)
Key derivation functions
Other schemes (PAKE)

Two-factor authentication

Before the lesson, take a few minutes to watch the TED talk with
Larrie Faith Cranor: What’s wrong with your pa$$w0rd? (link on
the Syllabus page).

Håkon Robbestad Gylterud
INF226 – Software Security

https://www.ted.com/talks/lorrie_faith_cranor_what_s_wrong_with_your_pa_w0rd
https://www.ted.com/talks/lorrie_faith_cranor_what_s_wrong_with_your_pa_w0rd

	System calls and file descriptors
	Preventing priviledge escalation
	Implementing the monitor/slave pattern
	Results

